Friday, September 30, 2011

05. Arithmetic Progressions


Exercise 5.1

Question 1:
In which of the following situations, does the list of numbers involved make as arithmetic progression and why?
(i) The taxi fare after each km when the fare is Rs 15 for the first km and Rs 8 for each additional km.
(ii) The amount of air present in a cylinder when a vacuum pump removes of the air remaining in the cylinder at a time.
(iii) The cost of digging a well after every metre of digging, when it costs Rs 150 for the first metre and rises by Rs 50 for each subsequent metre.
(iv)The amount of money in the account every year, when Rs 10000 is deposited at compound interest at 8% per annum.

Answer: 

(i) It can be observed that
Taxi fare for 1st km = 15
Taxi fare for first 2 km = 15 + 8 = 23
Taxi fare for first 3 km = 23 + 8 = 31
Taxi fare for first 4 km = 31 + 8 = 39
Clearly 15, 23, 31, 39 … forms an A.P. because every term is 8 more than the preceding term.
(ii) Let the initial volume of air in a cylinder be V lit. In each stroke, the vacuum pump removes of air remaining in the cylinder at a time. In other words, after every stroke, only part of air will remain.
Therefore, volumes will be
Clearly, it can be observed that the adjacent terms of this series do not have the same difference between them. Therefore, this is not an A.P.
(iii) Cost of digging for first metre = 150
Cost of digging for first 2 metres = 150 + 50 = 200
Cost of digging for first 3 metres = 200 + 50 = 250
Cost of digging for first 4 metres = 250 + 50 = 300
Clearly, 150, 200, 250, 300 … forms an A.P. because every term is 50 more than the preceding term.
(iv) We know that if Rs P is deposited at r% compound interest per annum for n years, our money will be after n years.
Therefore, after every year, our money will be
Clearly, adjacent terms of this series do not have the same difference between them. Therefore, this is not an A.P.

Question 2: 
Write first four terms of the A.P. when the first term a and the common difference d are given as follows
(i) a = 10, d = 10
(ii) a = − 2, d = 0
(iii) a = 4, d = − 3
(iv) a = − 1 d =
(v) a = − 1.25, d = − 0.25

Answer: 
(i) a = 10, d = 10
Let the series be a1, a2, a3, a4, a5
a1 = a = 10
a2 = a1 + d = 10 + 10 = 20
a3 = a2 + d = 20 + 10 = 30
a4 = a3 + d = 30 + 10 = 40
a5 = a4 + d = 40 + 10 = 50
Therefore, the series will be 10, 20, 30, 40, 50 …
First four terms of this A.P. will be 10, 20, 30, and 40.
(ii) a = −2, d = 0
Let the series be a1, a2, a3, a4
a1 = a = −2
a2 = a1 + d = − 2 + 0 = −2
a3 = a2 + d = − 2 + 0 = −2
a4 = a3 + d = − 2 + 0 = −2
Therefore, the series will be −2, −2, −2, −2 …
First four terms of this A.P. will be −2, −2, −2 and −2.
(iii) a = 4, d = −3
Let the series be a1, a2, a3, a4
a1 = a = 4
a2 = a1 + d = 4 − 3 = 1
a3 = a2 + d = 1 − 3 = −2
a4 = a3 + d = − 2 − 3 = −5
Therefore, the series will be 4, 1, −2 −5 …
First four terms of this A.P. will be 4, 1, −2 and −5.
(iv) a = −1, d =
Let the series be a1, a2, a3, a4
Clearly, the series will be
………….
First four terms of this A.P. will be .
(v) a = −1.25, d = −0.25
Let the series be a1, a2, a3, a4
a1 = a = −1.25
a2 = a1 + d = − 1.25 − 0.25 = −1.50
a3 = a2 + d = − 1.50 − 0.25 = −1.75
a4 = a3 + d = − 1.75 − 0.25 = −2.00
Clearly, the series will be 1.25, −1.50, −1.75, −2.00 ……..
First four terms of this A.P. will be −1.25, −1.50, −1.75 and −2.00.

Question 3: 
For the following A.P.s, write the first term and the common difference.
(i) 3, 1, − 1, − 3 …
(ii) − 5, − 1, 3, 7 …
(iii)
(iv) 0.6, 1.7, 2.8, 3.9 …

Answer: 
(i) 3, 1, −1, −3 …
Here, first term, a = 3
Common difference, d = Second term − First term
= 1 − 3 = −2
(ii) −5, −1, 3, 7 …
Here, first term, a = −5
Common difference, d = Second term − First term
= (−1) − (−5) = − 1 + 5 = 4
(iii)
Here, first term,
Common difference, d = Second term − First term

(iv) 0.6, 1.7, 2.8, 3.9 …
Here, first term, a = 0.6
Common difference, d = Second term − First term
= 1.7 − 0.6
= 1.1

Question 4: 
Which of the following are APs? If they form an A.P. find the common difference d and write three more terms.
(i) 2, 4, 8, 16 …
(ii)
(iii) − 1.2, − 3.2, − 5.2, − 7.2 …
(iv) − 10, − 6, − 2, 2 …
(v)
(vi) 0.2, 0.22, 0.222, 0.2222 ….
(vii) 0, − 4, − 8, − 12 …
(viii)
(ix) 1, 3, 9, 27 …
(x) a, 2a, 3a, 4a
(xi) a, a2, a3, a4
(xii)
(xiii)
(xiv) 12, 32, 52, 72
(xv) 12, 52, 72, 73 …

Answer: 
(i) 2, 4, 8, 16 …
It can be observed that
a2a1 = 4 − 2 = 2
a3a2 = 8 − 4 = 4
a4a3 = 16 − 8 = 8
i.e., ak+1ak is not the same every time. Therefore, the given numbers are not forming an A.P.
(ii)
It can be observed that
i.e., ak+1ak is same every time.
Therefore, and the given numbers are in A.P.
Three more terms are
(iii) −1.2, −3.2, −5.2, −7.2 …
It can be observed that
a2a1 = (−3.2) − (−1.2) = −2
a3a2 = (−5.2) − (−3.2) = −2
a4a3 = (−7.2) − (−5.2) = −2
i.e., ak+1ak is same every time. Therefore, d = −2
The given numbers are in A.P.
Three more terms are
a5 = − 7.2 − 2 = −9.2
a6 = − 9.2 − 2 = −11.2
a7 = − 11.2 − 2 = −13.2
(iv) −10, −6, −2, 2 …
It can be observed that
a2a1 = (−6) − (−10) = 4
a3a2 = (−2) − (−6) = 4
a4a3 = (2) − (−2) = 4
i.e., ak+1 ak is same every time. Therefore, d = 4
The given numbers are in A.P.
Three more terms are
a5 = 2 + 4 = 6
a6 = 6 + 4 = 10
a7 = 10 + 4 = 14
(v)
It can be observed that
i.e., ak+1 − ak is same every time. Therefore,
The given numbers are in A.P.
Three more terms are
(vi) 0.2, 0.22, 0.222, 0.2222 ….
It can be observed that
a2a1 = 0.22 − 0.2 = 0.02
a3a2 = 0.222 − 0.22 = 0.002
a4a3 = 0.2222 − 0.222 = 0.0002
i.e., ak+1 ak is not the same every time.
Therefore, the given numbers are not in A.P.
(vii) 0, −4, −8, −12 …
It can be observed that
a2a1 = (−4) − 0 = −4
a3a2 = (−8) − (−4) = −4
a4a3 = (−12) − (−8) = −4
i.e., ak+1 ak is same every time. Therefore, d = −4
The given numbers are in A.P.
Three more terms are
a5 = − 12 − 4 = −16
a6 = − 16 − 4 = −20
a7 = − 20 − 4 = −24
(viii)
It can be observed that
i.e., ak+1 ak is same every time. Therefore, d = 0
The given numbers are in A.P.
Three more terms are
(ix) 1, 3, 9, 27 …
It can be observed that
a2a1 = 3 − 1 = 2
a3a2 = 9 − 3 = 6
a4a3 = 27 − 9 = 18
i.e., ak+1 ak is not the same every time.
Therefore, the given numbers are not in A.P.
(x) a, 2a, 3a, 4a
It can be observed that
a2a1 = 2aa = a
a3a2 = 3a − 2a = a
a4a3 = 4a − 3a = a
i.e., ak+1 ak is same every time. Therefore, d = a
The given numbers are in A.P.
Three more terms are
a5 = 4a + a = 5a
a6 = 5a + a = 6a
a7 = 6a + a = 7a
(xi) a, a2, a3, a4
It can be observed that
a2a1 = a2a = a (a − 1)
a3a2 = a3a2 = a2 (a − 1)
a4a3 = a4a3 = a3 (a − 1)
i.e., ak+1 ak is not the same every time.
Therefore, the given numbers are not in A.P.
(xii)
It can be observed that
i.e., ak+1 ak is same every time.
Therefore, the given numbers are in A.P.
And,
Three more terms are
(xiii)
It can be observed that
i.e., ak+1 ak is not the same every time.
Therefore, the given numbers are not in A.P.
(xiv) 12, 32, 52, 72
Or, 1, 9, 25, 49 …..
It can be observed that
a2a1 = 9 − 1 = 8
a3a2 = 25 − 9 = 16
a4a3 = 49 − 25 = 24
i.e., ak+1 ak is not the same every time.
Therefore, the given numbers are not in A.P.
(xv) 12, 52, 72, 73 …
Or 1, 25, 49, 73 …
It can be observed that
a2a1 = 25 − 1 = 24
a3a2 = 49 − 25 = 24
a4a3 = 73 − 49 = 24
i.e., ak+1 ak is same every time.
Therefore, the given numbers are in A.P.
And, d = 24
Three more terms are
a5 = 73+ 24 = 97
a6 = 97 + 24 = 121
a7 = 121 + 24 = 145



Exercise 5.2

Question 1: 
Fill in the blanks in the following table, given that a is the first term, d the common difference and an the nth term of the A.P.

a
d
n
an
I
7
3
8
…...
II
− 18
…..
10
0
III
…..
− 3
18
− 5
IV
− 18.9
2.5
…..
3.6
V
3.5
0
105
…..
Answer: 
I. a = 7, d = 3, n = 8, an = ?
We know that,
For an A.P. an = a + (n − 1) d
= 7 + (8 − 1) 3
= 7 + (7) 3
= 7 + 21 = 28
Hence, an = 28
II. Given that
a = −18, n = 10, an = 0, d = ?
We know that,
an = a + (n − 1) d
0 = − 18 + (10 − 1) d
18 = 9d
Hence, common difference, d = 2
III. Given that
d = −3, n = 18, an = −5
We know that,
an = a + (n − 1) d
−5 = a + (18 − 1) (−3)
−5 = a + (17) (−3)
−5 = a − 51
a = 51 − 5 = 46
Hence, a = 46
IV. a = −18.9, d = 2.5, an = 3.6, n = ?
We know that,
an = a + (n − 1) d
3.6 = − 18.9 + (n − 1) 2.5
3.6 + 18.9 = (n − 1) 2.5
22.5 = (n − 1) 2.5
Hence, n = 10
V. a = 3.5, d = 0, n = 105, an = ?
We know that,
an = a + (n − 1) d
an = 3.5 + (105 − 1) 0
an = 3.5 + 104 × 0
an = 3.5
Hence, an = 3.5

Question 2: 
Choose the correct choice in the following and justify
I. 30th term of the A.P: 10, 7, 4, …, is
A. 97 B. 77 C. − 77 D. − 87
II 11th term of the A.P. is
A. 28 B. 22 C. − 38 D.   
Answer:
I. Given that
A.P. 10, 7, 4, …
First term, a = 10
Common difference, d = a2a1 = 7 − 10
= −3
We know that, an = a + (n − 1) d
a30 = 10 + (30 − 1) (−3)
a30 = 10 + (29) (−3)
a30 = 10 − 87 = −77
Hence, the correct answer is C.
II. Given that, A.P.
First term a = −3
Common difference, d = a2a1
We know that,
Hence, the answer is B.

Question 3: 

In the following APs find the missing term in the boxes
I.
II.
III.
IV.
V.   
Answer:
nth Term Of An Arithmetic Progression
I.
For this A.P.,
a = 2
a3 = 26
We know that, an = a + (n − 1) d
a3 = 2 + (3 − 1) d
26 = 2 + 2d
24 = 2d
d = 12
a2 = 2 + (2 − 1) 12
= 14
Therefore, 14 is the missing term.
II.
For this A.P.,
a2 = 13 and
a4 = 3
We know that, an = a + (n − 1) d
a2 = a + (2 − 1) d
13 = a + d (I)
a4 = a + (4 − 1) d
3 = a + 3d (II)
On subtracting (I) from (II), we obtain
−10 = 2d
d = −5
From equation (I), we obtain
13 = a + (−5)
a = 18
a3 = 18 + (3 − 1) (−5)
= 18 + 2 (−5) = 18 − 10 = 8
Therefore, the missing terms are 18 and 8 respectively.
III.
For this A.P.,
We know that,
Therefore, the missing terms are and 8 respectively.
IV.
For this A.P.,
a = −4 and
a6 = 6
We know that,
an = a + (n − 1) d
a6 = a + (6 − 1) d
6 = − 4 + 5d
10 = 5d
d = 2
a2 = a + d = − 4 + 2 = −2
a3 = a + 2d = − 4 + 2 (2) = 0
a4 = a + 3d = − 4 + 3 (2) = 2
a5 = a + 4d = − 4 + 4 (2) = 4
Therefore, the missing terms are −2, 0, 2, and 4 respectively.
V.
For this A.P.,
a2 = 38
a6 = −22
We know that
an = a + (n − 1) d
a2 = a + (2 − 1) d
38 = a + d (1)
a6 = a + (6 − 1) d
−22 = a + 5d (2)
On subtracting equation (1) from (2), we obtain
− 22 − 38 = 4d
−60 = 4d
d = −15
a = a2d = 38 − (−15) = 53
a3 = a + 2d = 53 + 2 (−15) = 23
a4 = a + 3d = 53 + 3 (−15) = 8
a5 = a + 4d = 53 + 4 (−15) = −7
Therefore, the missing terms are 53, 23, 8, and −7 respectively.

Question 4: 
Which term of the A.P. 3, 8, 13, 18, … is 78?

Answer: 
3, 8, 13, 18, …
For this A.P.,
a = 3
d = a2a1 = 8 − 3 = 5
Let nth term of this A.P. be 78.
an = a + (n − 1) d
78 = 3 + (n − 1) 5
75 = (n − 1) 5
(n − 1) = 15
n = 16
Hence, 16th term of this A.P. is 78.

Question 5: 
Find the number of terms in each of the following A.P.
I. 7, 13, 19, …, 205
II.   
Answer:
I. 7, 13, 19, …, 205
For this A.P.,
a = 7
d = a2a1 = 13 − 7 = 6
Let there are n terms in this A.P.
an = 205
We know that
an = a + (n − 1) d
Therefore, 205 = 7 + (n − 1) 6
198 = (n − 1) 6
33 = (n − 1)
n = 34
Therefore, this given series has 34 terms in it.
II.
For this A.P.,
Let there are n terms in this A.P.
Therefore, an = −47 and we know that,
Therefore, this given A.P. has 27 terms in it.

Question 6: 
Check whether − 150 is a term of the A.P. 11, 8, 5, 2, …

Answer: 
For this A.P.,
a = 11
d = a2a1 = 8 − 11 = −3
Let −150 be the nth term of this A.P.
We know that,
Clearly, n is not an integer.
Therefore, −150 is not a term of this A.P.

Question 7: 
Find the 31st term of an A.P. whose 11th term is 38 and the 16th term is 73
 Answer: 
Given that,
a11 = 38
a16 = 73
We know that,
an = a + (n − 1) d
a11 = a + (11 − 1) d
38 = a + 10d (1)
Similarly,
a16 = a + (16 − 1) d
73 = a + 15d (2)
On subtracting (1) from (2), we obtain
35 = 5d
d = 7
From equation (1),
38 = a + 10 × (7)
38 − 70 = a
a = −32
a31 = a + (31 − 1) d
= − 32 + 30 (7)
= − 32 + 210
= 178
Hence, 31st term is 178.

Question 8: 
An A.P. consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 29th term

Answer: 
Given that,
a3 = 12
a50 = 106
We know that,
an = a + (n − 1) d
a3 = a + (3 − 1) d
12 = a + 2d (I)
Similarly, a50 = a + (50 − 1) d
106 = a + 49d (II)
On subtracting (I) from (II), we obtain
94 = 47d
d = 2
From equation (I), we obtain
12 = a + 2 (2)
a = 12 − 4 = 8
a29 = a + (29 − 1) d
a29 = 8 + (28)2
a29 = 8 + 56 = 64
Therefore, 29th term is 64.

Question 9: 
If the 3rd and the 9th terms of an A.P. are 4 and − 8 respectively. Which term of this A.P. is zero.

Answer: 
Given that,
a3 = 4
a9 = −8
We know that,
an = a + (n − 1) d
a3 = a + (3 − 1) d
4 = a + 2d (I)
a9 = a + (9 − 1) d
−8 = a + 8d (II)
On subtracting equation (I) from (II), we obtain
−12 = 6d
d = −2
From equation (I), we obtain
4 = a + 2 (−2)
4 = a − 4
a = 8
Let nth term of this A.P. be zero.
an = a + (n − 1) d
0 = 8 + (n − 1) (−2)
0 = 8 − 2n + 2
2n = 10
n = 5
Hence, 5th term of this A.P. is 0.

Question 10: 
If 17th term of an A.P. exceeds its 10th term by 7. Find the common difference.

Answer: 
We know that,
For an A.P., an = a + (n − 1) d
a17 = a + (17 − 1) d
a17 = a + 16d
Similarly, a10 = a + 9d
It is given that
a17a10 = 7
(a + 16d) − (a + 9d) = 7
7d = 7
d = 1
Therefore, the common difference is 1.

Question 11: 
Which term of the A.P. 3, 15, 27, 39, … will be 132 more than its 54th term?

Answer: 
Given A.P. is 3, 15, 27, 39, …
a = 3
d = a2a1 = 15 − 3 = 12
a54 = a + (54 − 1) d
= 3 + (53) (12)
= 3 + 636 = 639
132 + 639 = 771
We have to find the term of this A.P. which is 771.
Let nth term be 771.
an = a + (n − 1) d
771 = 3 + (n − 1) 12
768 = (n − 1) 12
(n − 1) = 64
n = 65
Therefore, 65th term was 132 more than 54th term.
Alternatively,
Let nth term be 132 more than 54th term.
   

Question 12:
Two APs have the same common difference. The difference between their 100th term is 100, what is the difference between their 1000th terms?

Answer:
Let the first term of these A.P.s be a1 and a2 respectively and the common difference of these A.P.s be d.
For first A.P.,
a100 = a1 + (100 − 1) d
= a1 + 99d
a1000 = a1 + (1000 − 1) d
a1000 = a1 + 999d
For second A.P.,
a100 = a2 + (100 − 1) d
= a2 + 99d
a1000 = a2 + (1000 − 1) d
= a2 + 999d
Given that, difference between
100th term of these A.P.s = 100
Therefore, (a1 + 99d) − (a2 + 99d) = 100
a1a2 = 100 (1)
Difference between 1000th terms of these A.P.s
(a1 + 999d) − (a2 + 999d) = a1a2
From equation (1),
This difference, a1a2 = 100
Hence, the difference between 1000th terms of these A.P. will be 100.

Question 13: 
How many three digit numbers are divisible by 7?

Answer: 
First three-digit number that is divisible by 7 = 105
Next number = 105 + 7 = 112
Therefore, 105, 112, 119, …
All are three digit numbers which are divisible by 7 and thus, all these are terms of an A.P. having first term as 105 and common difference as 7.
The maximum possible three-digit number is 999. When we divide it by 7, the remainder will be 5. Clearly, 999 − 5 = 994 is the maximum possible three-digit number that is divisible by 7.
The series is as follows.
105, 112, 119, …, 994
Let 994 be the nth term of this A.P.
a = 105
d = 7
an = 994
n = ?
an = a + (n − 1) d
994 = 105 + (n − 1) 7
889 = (n − 1) 7
(n − 1) = 127
n = 128
Therefore, 128 three-digit numbers are divisible by 7.

Question 14: 
How many multiples of 4 lie between 10 and 250?

Answer: 
First multiple of 4 that is greater than 10 is 12. Next will be 16.
Therefore, 12, 16, 20, 24, …
All these are divisible by 4 and thus, all these are terms of an A.P. with first term as 12 and common difference as 4.
When we divide 250 by 4, the remainder will be 2. Therefore, 250 − 2 = 248 is divisible by 4.
The series is as follows.
12, 16, 20, 24, …, 248
Let 248 be the nth term of this A.P.
Therefore, there are 60 multiples of 4 between 10 and 250.

Question 15: 
For what value of n, are the nth terms of two APs 63, 65, 67, and 3, 10, 17, … equal

Answer:
63, 65, 67, …
a = 63
d = a2a1 = 65 − 63 = 2
nth term of this A.P. = an = a + (n − 1) d
an= 63 + (n − 1) 2 = 63 + 2n − 2
an = 61 + 2n (1)
3, 10, 17, …
a = 3
d = a2a1 = 10 − 3 = 7
nth term of this A.P. = 3 + (n − 1) 7
an = 3 + 7n − 7
an = 7n − 4 (2)
It is given that, nth term of these A.P.s are equal to each other.
Equating both these equations, we obtain
61 + 2n = 7n − 4
61 + 4 = 5n
5n = 65
n = 13
Therefore, 13th terms of both these A.P.s are equal to each other.

Question 16: 
Determine the A.P. whose third term is 16 and the 7th term exceeds the 5th term by 12.

Answer: 
=a3 = 16
a + (3 − 1) d = 16
a + 2d = 16 (1)
a7a5 = 12
[a+ (7 − 1) d] − [a + (5 − 1) d]= 12
(a + 6d) − (a + 4d) = 12
2d = 12
d = 6
From equation (1), we obtain
a + 2 (6) = 16
a + 12 = 16
a = 4
Therefore, A.P. will be
4, 10, 16, 22, …

Question 17: 
Find the 20th term from the last term of the A.P. 3, 8, 13, …, 253

Answer: 
Given A.P. is
3, 8, 13, …, 253
Common difference for this A.P. is 5.
Therefore, this A.P. can be written in reverse order as
253, 248, 243, …, 13, 8, 5
For this A.P.,
a = 253
d = 248 − 253 = −5
n = 20
a20 = a + (20 − 1) d
a20 = 253 + (19) (−5)
a20 = 253 − 95
a = 158
Therefore, 20th term from the last term is 158.

Question 18: 
The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the A.P.

Answer: 
We know that,
an = a + (n − 1) d
a4 = a + (4 − 1) d
a4 = a + 3d
Similarly,
a8 = a + 7d
a6 = a + 5d
a10 = a + 9d
Given that, a4 + a8 = 24
a + 3d + a + 7d = 24
2a + 10d = 24
a + 5d = 12 (1)
a6 + a10 = 44
a + 5d + a + 9d = 44
2a + 14d = 44
a + 7d = 22 (2)
On subtracting equation (1) from (2), we obtain
2d = 22 − 12
2d = 10
d = 5
From equation (1), we obtain
a + 5d = 12
a + 5 (5) = 12
a + 25 = 12
a = −13
a2 = a + d = − 13 + 5 = −8
a3 = a2 + d = − 8 + 5 = −3
Therefore, the first three terms of this A.P. are −13, −8, and −3.

Question 19: 
Subba Rao started work in 1995 at an annual salary of Rs 5000 and received an increment of Rs 200 each year. In which year did his income reach Rs 7000?

Answer: 
It can be observed that the incomes that Subba Rao obtained in various years are in A.P. as every year, his salary is increased by Rs 200.
Therefore, the salaries of each year after 1995 are
5000, 5200, 5400, …
Here, a = 5000
d = 200
Let after nth year, his salary be Rs 7000.
Therefore, an = a + (n − 1) d
7000 = 5000 + (n − 1) 200
200(n − 1) = 2000
(n − 1) = 10
n = 11
Therefore, in 11th year, his salary will be Rs 7000.

Question 20: 
Ramkali saved Rs 5 in the first week of a year and then increased her weekly saving by Rs 1.75. If in the nth week, her week, her weekly savings become Rs 20.75, find n.

Answer: 
Given that,
a = 5
d = 1.75
an = 20.75
n = ?
an = a + (n − 1) d
n − 1 = 9
n = 10
Hence, n is 10.



Exercise 5.3

Question 1:

Find the sum of the following APs.
(i) 2, 7, 12 ,…., to 10 terms.
(ii) − 37, − 33, − 29 ,…, to 12 terms
(iii) 0.6, 1.7, 2.8 ,…….., to 100 terms
(iv) ,………, to 11 terms

Answer:

Use Of Formula For Sum Of n Terms Of An Arithmetic ProgressionRead now to understand this topic better »
(i)2, 7, 12 ,…, to 10 terms
For this A.P.,
a = 2
d = a2a1 = 7 − 2 = 5
n = 10
We know that,

(ii)−37, −33, −29 ,…, to 12 terms
For this A.P.,
a = −37
d = a2a1 = (−33) − (−37)
= − 33 + 37 = 4
n = 12
We know that,

(iii) 0.6, 1.7, 2.8 ,…, to 100 terms
For this A.P.,
a = 0.6
d = a2a1 = 1.7 − 0.6 = 1.1
n = 100
We know that,

(iv). …….. , to 11 terms
For this A.P.,

n = 11

We know that,
 

Question 2:
Find the sums given below
(i) 7 + + 14 + ………… + 84
(ii) 34 + 32 + 30 + ……….. + 10
(iii) − 5 + (− 8) + (− 11) + ………… + (− 230)

Answer:

(i)7 + + 14 + …………+ 84
For this A.P.,
a = 7
l = 84

Let 84 be the nth term of this A.P.
l = a + (n − 1)d


22 = n − 1
n = 23
We know that,

(ii)34 + 32 + 30 + ……….. + 10
For this A.P.,
a = 34
d = a2a1 = 32 − 34 = −2
l = 10
Let 10 be the nth term of this A.P.
l = a + (n − 1) d
10 = 34 + (n − 1) (−2)
−24 = (n − 1) (−2)
12 = n − 1
n = 13


(iii)(−5) + (−8) + (−11) + ………… + (−230)
For this A.P.,
a = −5
l = −230
d = a2a1 = (−8) − (−5)
= − 8 + 5 = −3
Let −230 be the nth term of this A.P.
l = a + (n − 1)d
−230 = − 5 + (n − 1) (−3)
−225 = (n − 1) (−3)
(n − 1) = 75
n = 76
And,

 

Question 3:
In an AP
(i) Given a = 5, d = 3, an = 50, find n and Sn.
(ii) Given a = 7, a13 = 35, find d and S13.
(iii) Given a12 = 37, d = 3, find a and S12.
(iv) Given a3 = 15, S10 = 125, find d and a10.
(v) Given d = 5, S9 = 75, find a and a9.
(vi) Given a = 2, d = 8, Sn = 90, find n and an.
(vii) Given a = 8, an = 62, Sn = 210, find n and d.
(viii) Given an = 4, d = 2, Sn = − 14, find n and a.
(ix) Given a = 3, n = 8, S = 192, find d.
(x)Given l = 28, S = 144 and there are total 9 terms. Find a.

Answer:

(i) Given that, a = 5, d = 3, an = 50
As an = a + (n − 1)d,
∴ 50 = 5 + (n − 1)3
45 = (n − 1)3
15 = n − 1
n = 16

(ii) Given that, a = 7, a13 = 35
As an = a + (n − 1) d,
a13 = a + (13 − 1) d
35 = 7 + 12 d
35 − 7 = 12d
28 = 12d


(iii)Given that, a12 = 37, d = 3
As an = a + (n − 1)d,
a12 = a + (12 − 1)3
37 = a + 33
a = 4

(iv) Given that, a3 = 15, S10 = 125
As an = a + (n − 1)d,
a3 = a + (3 − 1)d
15 = a + 2d (i)

On multiplying equation (1) by 2, we obtain
30 = 2a + 4d (iii)
On subtracting equation (iii) from (ii), we obtain
−5 = 5d
d = −1
From equation (i),
15 = a + 2(−1)
15 = a − 2
a = 17
a10 = a + (10 − 1)d
a10 = 17 + (9) (−1)
a10 = 17 − 9 = 8
(v)Given that, d = 5, S9 = 75
As ,

25 = 3(a + 20)
25 = 3a + 60
3a = 25 − 60

an = a + (n − 1)d
a9 = a + (9 − 1) (5)

(vi) Given that, a = 2, d = 8, Sn = 90
As,

90 = n [2 + (n − 1)4]
90 = n [2 + 4n − 4]
90 = n (4n − 2) = 4n2 − 2n
4n2 − 2n − 90 = 0
4n2 − 20n + 18n − 90 = 0
4n (n − 5) + 18 (n − 5) = 0
(n − 5) (4n + 18) = 0
Either n − 5 = 0 or 4n + 18 = 0
n = 5 or
However, n can neither be negative nor fractional.
Therefore, n = 5
an = a + (n − 1)d
a5 = 2 + (5 − 1)8
= 2 + (4) (8)
= 2 + 32 = 34
(vii) Given that, a = 8, an = 62, Sn = 210

n = 6
an = a + (n − 1)d
62 = 8 + (6 − 1)d
62 − 8 = 5d
54 = 5d

(viii) Given that, an = 4, d = 2, Sn = −14
an = a + (n − 1)d
4 = a + (n − 1)2
4 = a + 2n − 2
a + 2n = 6
a = 6 − 2n (i)

−28 = n (a + 4)
−28 = n (6 − 2n + 4) {From equation (i)}
−28 = n (− 2n + 10)
−28 = − 2n2 + 10n
2n2 − 10n − 28 = 0
n2 − 5n −14 = 0
n2 − 7n + 2n − 14 = 0
n (n − 7) + 2(n − 7) = 0
(n − 7) (n + 2) = 0
Either n − 7 = 0 or n + 2 = 0
n = 7 or n = −2
However, n can neither be negative nor fractional.
Therefore, n = 7
From equation (i), we obtain
a = 6 − 2n
a = 6 − 2(7)
= 6 − 14
= −8
(ix)Given that, a = 3, n = 8, S = 192

192 = 4 [6 + 7d]
48 = 6 + 7d
42 = 7d
d = 6
(x)Given that, l = 28, S = 144 and there are total of 9 terms.

(16) × (2) = a + 28
32 = a + 28
a = 4

Question 4:
How many terms of the AP. 9, 17, 25 … must be taken to give a sum of 636?

Answer:

Let there be n terms of this A.P.
For this A.P., a = 9
d = a2a1 = 17 − 9 = 8

636 = n [9 + 4n − 4]
636 = n (4n + 5)
4n2 + 5n − 636 = 0
4n2 + 53n − 48n − 636 = 0
n (4n + 53) − 12 (4n + 53) = 0
(4n + 53) (n − 12) = 0
Either 4n + 53 = 0 or n − 12 = 0
or n = 12
n cannot be . As the number of terms can neither be negative nor fractional, therefore, n = 12 only.

Question 5:
The first term of an AP is 5, the last term is 45 and the sum is 400. Find the number of terms and the common difference.
Answer:

Given that,
a = 5
l = 45
Sn = 400

n = 16
l = a + (n − 1) d
45 = 5 + (16 − 1) d
40 = 15d
 

Question 6:
The first and the last term of an AP are 17 and 350 respectively. If the common difference is 9, how many terms are there and what is their sum?

Answer:

Given that,
a = 17
l = 350
d = 9
Let there be n terms in the A.P.
l = a + (n − 1) d
350 = 17 + (n − 1)9
333 = (n − 1)9
(n − 1) = 37
n = 38

Thus, this A.P. contains 38 terms and the sum of the terms of this A.P. is 6973.

Question 7:
Find the sum of first 22 terms of an AP in which d = 7 and 22nd term is 149.

Answer:

d = 7
a22 = 149
S22 = ?
an = a + (n − 1)d
a22 = a + (22 − 1)d
149 = a + 21 × 7
149 = a + 147
a = 2
 
Question 8:
Find the sum of first 51 terms of an AP whose second and third terms are 14 and 18 respectively.

Answer:
Given that,
a2 = 14
a3 = 18
d = a3a2 = 18 − 14 = 4
a2 = a + d
14 = a + 4
a = 10

= 5610

Question 9:
If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of first n terms.

Answer:

Given that,
S7 = 49
S17 = 289

7 = (a + 3d)
a + 3d = 7 (i)
Similarly,

17 = (a + 8d)
a + 8d = 17 (ii)
Subtracting equation (i) from equation (ii),
5d = 10
d = 2
From equation (i),
a + 3(2) = 7
a + 6 = 7
a = 1

= n2  


Question 10:

Show that a1, a2 … , an , … form an AP where an is defined as below
(i) an = 3 + 4n
(ii) an = 9 − 5n
Also find the sum of the first 15 terms in each case.

Answer:
(i) an = 3 + 4n
a1 = 3 + 4(1) = 7
a2 = 3 + 4(2) = 3 + 8 = 11
a3 = 3 + 4(3) = 3 + 12 = 15
a4 = 3 + 4(4) = 3 + 16 = 19
It can be observed that
a2a1 = 11 − 7 = 4
a3a2 = 15 − 11 = 4
a4a3 = 19 − 15 = 4
i.e., ak + 1ak is same every time. Therefore, this is an AP with common difference as 4 and first term as 7.

= 15 × 35
= 525
(ii) an = 9 − 5n
a1 = 9 − 5 × 1 = 9 − 5 = 4
a2 = 9 − 5 × 2 = 9 − 10 = −1
a3 = 9 − 5 × 3 = 9 − 15 = −6
a4 = 9 − 5 × 4 = 9 − 20 = −11
It can be observed that
a2a1 = − 1 − 4 = −5
a3a2 = − 6 − (−1) = −5
a4a3 = − 11 − (−6) = −5
i.e., ak + 1ak is same every time. Therefore, this is an A.P. with common difference as −5 and first term as 4.

= −465



No comments:

Post a Comment